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This paper considers hydraulic control and upstream influence in systems where the 
only wave propagation mechanism arises from the variation of vorticity or potential 
vorticity. These systems include two-dimensional shear flows as well as many simple 
paradigms for large-scale geophysical flows. The simplest is a flow in which the 
vorticity or potential vorticity is piecewise constant. We consider such a flow confined 
to a rotating channel and disturbed by a topographic perturbation. We analyse the 
behaviour of the system using steady nonlinear long-wave theory and demonstrate that 
it exhibits behaviour analogous to open-channel hydraulics, with the possibility of 
different upstream and downstream states. The manner by which the system achieves 
such states is examined using time-dependent long-wave theory via integration along 
characteristics and using full numerical solution via the contour-dynamics technique. 

The full integrations agree well with the hydraulic interpretation of the steady-state 
theory. One aspect of the behaviour of the system that is not seen in open-channel 
hydraulics is that for strong subcritical flows there is a critical topographic amplitude 
beyond which information from the control cannot propagate far upstream. Instead 
flow upstream of the topographic perturbation adjusts until the long-wave speed is 
zero, the control moves to the leading edge of the obstacle and flow downstream of the 
control is supercritical, with a transition from one supercritical branch to another on 
the downstream slope of the obstacle. 

1. Introduction 
The phenomenon of Rossby-wave propagation, depending on a gradient of vorticity 

or potential vorticity, is ubiquitous in large-scale geophysical fluid dynamics. It is 
relevant in the oceanic context to the theory of the large-scale thermohaline and wind- 
driven circulation and to the theory of coastal circulations, and in the atmospheric 
context to the theory of the general circulation of the troposphere, stratosphere and 
mesosphere. Because of this wide potential application we choose in this paper to 
concentrate on Rossby-wave propagation in the presence of background rotation. 
However, waves analogous to Rossby waves exist in non-rotating two-dimensional 
shear flows and the methods and interpretation developed in this paper apply equally 
well to this case. 

In the above applications it has become clear that many aspects of the nonlinear 
behaviour of Rossby waves need to be taken into account. Whilst realistic nonlinear 
behaviour is often so complex that it is tractable only via large-scale numerical 
simulation, there are some situations in which the important aspects of nonlinearity 
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can be captured in relatively simple models. Examples include the balance between 
nonlinear and dispersive effects captured in weakly nonlinear wave theory and allowing 
phenomena such as solitary waves, and the nonlinear breaking of waves in localized 
regions of the flow and the resulting local scale cascade and wave-mean flow 
interaction, as captured in nonlinear critical-layer theory. 

Another area of nonlinear wave behaviour is concerned with the question of 
hydraulic control and upstream influence, in particular the manner in which wave 
propagation effects can control, for example, the volume flow through a system, and 
the related question of whether the disturbance associated with flow over an obstacle 
will propagate upstream and thereby have a permanent effect on the oncoming flow. 
It is now realized that this sort of behaviour can occur in quite general wave systems 
and can be analysed quite independently of the detailed physical mechanisms involved 
in any particular system (Benjamin 1970; Gill 1977). In order to identify hydraulic 
behaviour in a specific system it seems almost essential to analyse some of the 
particular physical and mathematical details of that system. 

A number of previous studies have studied hydraulic control in a geophysical 
context, i.e. in flows in which stratification and rotation play a role. The single-layer 
rotating channel problem has been studied by Whitehead, Leetma & Knox (1974), Gill 
(1977), and others and has been reviewed by Pratt & Lundberg (1991). The 
corresponding multilayer problem has been considered by Hogg (1983). Hydraulic 
effects in non-rotating multilayer and continuously stratified flow have been reviewed 
by Baines (1987). 

In all these examples the waves that control the propagation of information and 
therefore determine the structure of the flow are so-called ‘fast modes’, e.g. boundary 
Kelvin waves, internal gravity waves, or coastal Kelvin waves. Of course there is no 
reason why ‘slow modes’ should not play a controlling role and indeed this seems to 
be the case in Hughes (1985a,b, 1986a,b, 1987, see also 1989, Appendix), who 
considered hydraulic behaviour in coastal currents, where criticality of the topographic 
Rossby waves (or class I1 waves) is important. Pratt & Armi (1987) have analysed in 
some detail the steady states of rotating channel flow with non-uniform potential 
vorticity and have identified critical control associated with both gravity modes and 
Rossby modes. However the system they consider is sufficiently complicated for it to 
be difficult to address the question of whether critically controlled states can be 
achieved in practice. Very recently Woods (1993) has extended the discussion of self- 
similar hydraulically controlled stratified flows in Benjamin (1981) to flows on a /?- 
plane, though the requirement of self-similarity requires attention to be confined to 
flows with constant vorticity gradients. 

Interest in the possibility of hydraulic behaviour where the controlling waves are 
‘slow modes’, i.e. Rossby waves, has also been shown by P. G. Baines (1988, 
unpublished manuscript) and Rhines (1 989) in considering large-scale oceanic flow. In 
this context the contribution of relative vorticity to the potential vorticity may be 
neglected, allowing considerable simplifications of the governing equations to a first- 
order hyperbolic system. At least superficially these equations resemble those for a one- 
dimensional shallow-water system, for example, and on this basis it appears that there 
will be a simple hydraulic analogy. However, care is needed in the interpretation of 
these equations, which are fundamentally two-dimensional, and it turns out that the 
analogue of the condition for criticality under a hydraulic theory is simply a statement 
that there be a critical point (in the geometric sense) on the characteristic in question. 
The numerical experiments of Rhines (1989) have certainly shown that disturbances 
can extend far upstream from topography, along critical characteristics, but the exact 
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relationship, if any, to simple hydraulic theories, remains obscure. Indeed Hogg (1989) 
has argued that the sharp gradients and upstream disturbances in Rhines’ experiments 
result from the formation of caustics, rather than from any hydraulic behaviour. 

There is, however, a context in which a hydraulic interpretation of Rossby-wave 
behaviour seems beyond question and that is the case of flow where the potential 
vorticity takes only two values, in regions separated by a single material contour. The 
hydraulic behaviour of this system does not seem to have been noted before although 
it is similar to systems studied by Hughes (1986a) and Pratt (1989), except that Pratt 
considered a system in which potential vorticity gradienfs were piecewise constant 
between the contours across which the potential vorticity was discontinuous. The 
behaviour of our system will therefore be described here in some detail. Its great 
advantage is that the full nonlinear equations, including short-wave effects, can be 
integrated using the contour-dynamics method. The time dependence of the system, as 
well as the possible steady states may therefore be considered. Numerical solutions of 
the full evolution equations may be compared with the simple steady and time- 
dependent long-wave theories and it may be verified that the solutions predicted by 
these simple theories are realizible. The system also serves as a paradigm for any flow 
supporting Rossby-wave propagation on vorticity or potential vorticity gradients that 
are relatively localized. 

The upstream-downstream flow pairs derived below fall into the class of conjugate 
flows considered by Benjamin (1971) who presented a general theory for flows where 
the volume and energy fluxes are conserved but the flow force is altered by an obstacle 
held in place in the flow. The simplifications arising in the present work from choosing 
a spdcific (but still very general) problem allow the identification of a unique conjugate 
pair with a given initial value problem and close comparison of full numerical solutions 
with long-wave theories. As in Benjamin (1971) we place no restriction on wave 
amplitude in deriving the magnitude of upstream influence. This differs from the earlier 
analysis of Benjamin (1970) where it was shown rigorously, on the more restrictive 
basis of weakly nonlinear theory (accurate to the square of wave amplitude), that 
upstream influence is present whenever a steady lee-wave wake occurs in open-channel 
flow. McIntyre (1972) derived analogous weakly nonlinear results for two-dimensional 
stratified flows and axisymmetric rotating flows. 

The structure of the paper is as follows. In 52 we set up the mathematical 
formulation of the model flow to be considered, note some of its properties, and 
consider the long-wave theory for disturbances forced by topographic perturbations, 
both in the steady-state and in the time-dependent case. In $3 we use the long-wave 
theory, including integration along characteristics, and numerical integration of the 
full equations using the contour-dynamics technique, to consider the behaviour of the 
system in various parameter regimes. In 54 we consider the occurrence of reversed flow, 
which in many steady-state models have severe implications for the realizability of the 
predicted solutions. Finally in 5 5 we discuss some of the implications of the results and 
some possible extensions of this work. 

2. Mathematical formulation 
2.1. The model 

We consider single-layer rotating flow with variable bottom topography and a rigid lid 
and assume that the rotation is sufficiently rapid and the variations in topography 
sufficiently weak that the flow is governed by the potential vorticity equation in the 
form 
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where @ is the streamfunction,f, is the Coriolis parameter, H i s  the mean depth of the 
fluid layer and h is the height of the bottom topography. x and y are Cartesian 
coordinates, t is time and D/Dt = a/at  + ua/ax + va/ay is the advective derivative, with 
u and v being the velocity components in the x- and y-directions respectively. In terms 
of $, u and v are given by 

The quantity appearing inside the advective derivative in (2.1) is the quasi-geostrophic 
potential vorticity, q, say. 

One special class of flows has piecewise-constant q. For these flows it follows from 
(2.1) that the boundaries between different q-regions are material contours and further 
that, given suitable boundary conditions on $, the flow may be specified completely in 
terms of the shapes of the contours. A method of integrating (2.1) is to follow the 
motion of these contours, tracking their position by a finite set of nodes. This 
technique, known as contour dynamics, is now widely used and is continually being 
improved in various ways (Dritschel 1988). It is the method used for this investigation 
and is described in more detail in the Appendix. 

Of course the motivation for considering these flows is not just that a convenient 
numerical technique exists for following their evolution. One might also argue that 
the consideration of flows with piecewise-constant q is a natural step in the study of 
flows with continuous varying q, in the same way that flows with layers of fluid of 
homogeneous density have been used as paradigms for continuously stratified flow. 
Indeed a flow in which q takes only two different values is in some sense the simplest 
system that supports Rossby-wave propagation - the Rossby waves being manifested 
in the oscillations of the contour that separates the two constant-q regions. 

We consider flow in a channel with boundaries parallel to the x-axis, at y = 0 and 
y = L, say. We assume that the topography takes the form of a step, with topographic 
height being given by 

(2.3 a) 

with & tending to the constant value Y,  as x becomes large and negative or large and 
positive. It is assumed that the flow at time t = 0 is a uniform stream, with velocity - U 
in the x-direction. It follows that the relative vorticity is zero across the channel 
initially. The initial distribution of potential vorticity q is thus given by 

(2.3 b) 

It is clear that, unless & = Y, the q contour lying along y = &(x) is not a steady state. 
For future reference it is helpful to denote the regions in which q = 0 and q = Q by R, 
and R-, respectively. 

It is convenient at this stage to non-dimensionalize as follows: x and y by L, $ by 
QL2 and t by Q-l. The only parameter appearing in the problem apart from the size 
of the non-dimensional topographic deflection is then the non-dimensional velocity 
U/QL which we denote by a. The physical system, after non-dimensionalization, is 
shown in figure 1. 



A simple model of Rossby-wave hydraulic behaviour 363 
1 t 

t 

X 

FIGURE 1. The geometry considered (after non-dimensionalization). The oncoming flow has speed 01 

from right to left. The channel, assumed to be in a rapidly rotating frame of reference, is of constant 
width 1 with a step change in depth from a shallow shelf region in 0 < y < Y,(x) to a deeper region 
in &(x) < y 6 1.  The curve y = Y,(x) is shown as a solid line, and the vorticity contour dividing R,  
from R- is shown as a dashed line. In the cases described in detail in the text the shelf narrows 
smoothly by a fraction E in the neighbourhood of the origin. Region R, contains relative vorticity 1, 
region R, relative vorticity - 1. 

It follows that the (non-dimensional) streamfunction $ satisfies the equation 
Vz$ = 1 ( x E R ~ ) ,  ( 2 . 4 ~ )  

V z $ = - l  ( x E R ~ ) ,  
Vz$ = 0 (otherwise), 

(2.4b) 
( 2 . 4 ~ )  

where R, is the region 47 > yh and x E R-, and R, the region y < Yh and x E R,. The 
boundary conditions are that @ = 0 on y = 0 and $ = a on y = 1. 

The time evolution of the system is determined by the fact that the boundary 
between R- and R,, is %‘say, is a material contour and therefore advected by the local 
flow, i.e. if 

%?={x(s,t); -oo < s <  oo} ( 2 . 5 ~ )  
then axlat = k x V$lx-x(s,t,, (2.5b) 

where k is a unit vector in the vertical. 
Equations (2.4) and (2.5) are sufficient to describe the evolution of the flow. 

2.2. Linear theory 
It is helpful to recall the linear theory for small disturbances to the basic state, perhaps 
induced by small deflections of the topographic step. We restrict attention to the case 
where the undisturbed position of the step is at the centre of the channel (i.e. &( f 00) 

= 0.5) since it is this case that will be considered later in the paper. The dispersion 
relation for waves on the vorticity contour, of wavenumber k and frequency o, is 

o = -ak+;tanhik. (2 * 6) 
The first term on the right-hand side represents the effects of advection and the 

second those of the q-contour. For a > the group velocity of all waves is negative 
(downstream), since the advection dominates, and no stationary (o = 0) wave of finite 
wavelength exists. For a < 4 the group velocity of longer waves is positive (upstream), 
with the longest (k  = 0) waves having the largest upstream group velocity, and there 
is a finite wavelength for which waves are stationary. 

Briefly, for small topographic displacements, the time evolution from an initial 
condition in which the q-contour lies along the topographic contour is as follows. For 
a > + the initial perturbation in the q-contour is swept downstream and a steady stage 
is set up in which the q-contour displacement is symmetric and of the opposite sign to 
the topographic displacement. For a < $ the initial displacement disperses into longer 
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waves, which propagate upstream, and shorter waves which propagate downstream. 
As the displacement adjusts it builds a steady 'lee wave' pattern downstream in which 
the dominant wavelength is that which is stationary. The resulting steady-state pattern 
can therefore be highly asymmetric about the topographic displacement when the 
stationary wavelength is comparable to the lengthscale of the topographic perturbation. 

2.3. Long-wave theory 
We now consider the case where the topographic and contour displacements are finite 
and linear theory will not be accurate. The finite-amplitude behaviour is most tractable 
in the long-wave limit and we first consider possible steady states in this limit. 

(i) Steady solutions 
We assume that the x-scale of the topographic displacement is large compared with 

the width of the channel. One consequence of this assumption is that the y-coordinate 
of the q-contour %? is a single-valued function of x, which we denote by Y(x). 

In the long-wave limit the x-derivatives can be neglected and (2.4a-c) therefore 
reduce to 

$yy = 0 (0 < y < min(Y,, Y) ) ,  (2.6a) 

?bYU = W ( Y -  r,) (2.7b) 
$YY = 0 (max(Y,, Y )  < y < 11, ( 2 . 7 ~ )  

(min(Y,, r> < y < max(r,, Y)) ,  

with $ = 0  on y =  0 and $ = a  on y = 1. 
These equations may be solved to give $(x, y) as 

ay+8(1- Y)"( l -  Y,y}y (0 < Y < Y,), 

oIy++{Y2- Y 2  ?Jb- 1 )  ( Y < Y  < 11, 

ay+;((I- Y y - ( l -  yh)2)y (0 < Y < 0, 
ay-;o,-Y,)2+;{Y;-Y2)(l-y) ( Y < y <  &), 

$(x,y) = .y+ao,-Y)2++{Y~-Y2}(1-y) ( Y ,  < y < Y ) ,  (2.8 a) 

(2.8 b)  

'I 
if & < Y ,  and 

if K > Y.  
The steady-state solution is determined by noting that ~ ( x ,  Y(x ) )  must be constant 

(and equal to aY, say) since there is no flow across the material contour '8, y = Y(x) .  
It follows that Y(x) satisfies the implicit equation 

= y2- y;  Y -  Y 2a ~ Y-  1 (2.9 a) 

Y- Y 
-2a-=(l-Y,)2-(1-Y)2 Y ( Y <  Y,). (2.9b) 

(ii) Time-dependent solutions 
The long-wave theory extends directly to time-dependent flows. The same equations 

(2.8a) and (2.8b) hold for $; the difference is that it is no longer required that 
$(x, Y(x))  be constant. Instead the kinematical boundary condition at the q-contour 
requires that 

(2.10) 
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FIGURE 2. Contour plot of the long-wave speed c as a function of Y and 5 for a = 0.125. The contour 
interval is O.la and the highest-valued contour shown is 0.101. The region where c > 0 is shaded, The 
contour shapes and intervals would be the same for other values of a but the values would be 
different. In particular the long-wave speed is always a maximum at Y = = t. The zero contour 
therefore vanishes for a = 0.25 and the long-wave speed is then everywhere negative. To the left of 
the dashed line &/a Y > 0 and an isolated disturbance for which Y is anomalously large will therefore 
steepen to the right. Elsewhere such a disturbance will steepen to the left. 

where the derivatives of $ are to be evaluated at y = Y(x, t). On substitution from 
(2.8a) and (2.8b) it follows that 

(2.11) i ay ay 
at ax ax 
- - {~~+;[3Y2-22-  Y i ] -  = (1 - Y )  Y 3 

-++4[3(1- ay Y)2-2(1- Y ) - (1 -  y h ) 2 ] } -  ay = ( 1  - r,) Y- a Y ,  

( Y  > F-2, 

( Y  < %). at ax ax 

This first-order hyperbolic equation expresses the propagation of long waves on the 
vorticity interface, the wave speed c being given by the coefficient of the x-derivative. 
Note that the wave speed is made up of two contributions, the first simply due to 
advection and the second to the Rossby propagation mechanism. The former is 
generally downstream (i.e. negative in the sign convention adopted here) for CL > 0, but 
depends on Y and yh, and may under some circumstances be positive, even for a > 0. 
The latter is equal to Y ( l -  Y )  and is always upstream (i.e. positive). 

The steepening behaviour of long waves also follows from (2.11). Note first that the 
form of the dependence of the wave speed on Y and % does not change as a function 
of a;  the varying part is independent of a. The steepening behaviour for all values of 
CL is therefore determined by the sign of ac/a Y,  which is positive if Y < +(O < Y ,  < +) or 
Y < yh($ < & < $), or Y < f( yh > t),  and negative otherwise. Furthermore the wave 
speed is always a maximum when Y = yh = and takes its minimum (i.e. most 
downstream) value for a given value of yh when Y = 0 or 1.  Note also that, however 
small a, there are always some values of Y and & for which wave speeds are 
downstream. These properties are summarized in figure 2, which shows a contour plot 
of the wave speed as a function of Y and yh. The value of a chosen is $ so there are 
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indeed regions for which the wave speed is positive (i.e. upstream), but the shape of the 
contours, and the contour interval, is the same for all values of a. 

3. Numerical integrations and interpretation 
The evolution of the system was investigated by numerical integration of the 

unapproximated equations using the contour-dynamics (CD) algorithm described in 
the Appendix. Before considering specific cases it is useful to note the following 
simplifying convention. If the position of the topographic step is reflected about the 
channel centreline y = i, i.e. yh is replaced by 1 - yh, then the flow evolves with 1 - Y 
replacing Y. In particular, the steady-state configuration is unaltered under 
simultaneous reflection about both Y = i and yh = i. The following discussion and 
examples are thus simplified by describing only narrowing shelves where yh decreases 
smoothly with decreasing x from its upstream value to some minimum value in the 
neighbourhood of the origin x = 0. For localized topography yh then increases 
downstream with the shelf width far downstream returning to its upstream value. The 
symmetry of the problem means that the discussion applies directly to widening shelves 
also (though this would not be the case if the original ‘undisturbed’ configuration of 
the flow were not exactly symmetric). It is convenient to choose the origin x = 0 at the 
point of minimum shelf width and to introduce a measure of the fractional narrowing 
of the shelf, 

For definiteness the discussion is further restricted to the case of a shelf occupying 
precisely half the channel width, i.e. &++ as x + f  co, but once again flow states for 
differing shelf widths are completely analogous to the present state and follow 
similarly. In this case the fraction by which the shelf narrows E = 1 -2&(0), (as 
indicated in figure 1). In all the cases examined numerically the topography is given by 

E = 1 - y , ( O ) / y , ( c o ) .  

%(x) = 8 1 - f2 exp [ - (x/L)21), 
and the initial condition is Y(x,O) = Y,(x).  The length L varies and will be given for 
each case as it is discussed. 

It was found that the behaviour showed distinctly different forms in three different 
ranges of values of a. The first, a < a2 = 0.05448, we shall refer to as the weak 
subcritical regime, since the strength of the flow is weak relative to the appropriate 
measure of the vorticity jump and it is possible for waves to propagate upstream (for 
some values of Y and yh). In the second, a2 d a d a1 = f, the flow is stronger, but 
upstream propagation is still possible. We refer to this as the strong subcritical regime. 
Finally, in the third regime, LY > aI, the flow is stronger still and no upstream 
propagation is possible. We refer to this as the supercritical regime. The values for a1 
and a2 are for the case where the topographic step and, initially at least, the potential 
vorticity contour both lie in the centre of the channel far upstream and downstream of 
the topographic perturbation. For other upstream configurations the values of L Y ~  and 
a2 will be different, but a similar set of regimes will exist. 

We now describe the regimes one by one. 

3.1.  The weak subcritical regime (LY d a2 = 0.05448) 
For steady flow in the long-wave limit the position Y(x)  of the streamline &c, Y(x)) 
= Y, dividing low-potential-vorticity fluid in y > Y(x)  from high-potential-vorticity 
fluid in y < Y(x) ,  is determined by the local position yh(x) of the step change in depth 
according to ( 2 . 9 ~ )  and (2.9b).  The steady states can be described most easily by 
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FIGURE 3. Graphs relating the position Y(x), of the streamline @(x, Y(x)) = Y dividing low-potential- 
vorticity fluid in y > Y(x) from high-potential-vorticity fluid in y < Y(x), to the local position %(x) 
of the step change in depth, according to the steady long-wave solution (2.9a, b). The flow regime is 
subcritical, with a = 1 / 6 r  % is plotted as a function of Y for values of Y ranging from to 0 to a at 
intervals of 0. la. Part of the curve for Y = h is shown in bold and discussed in detail in the text. The 
shaded regions bounded by bold lines show those values of Y and % for which there is reversed flow 
(discussed in detail in 94). 

plotting 5 as a function of Y. Figure 3 gives, for 01 = 1/611 a number of curves 
corresponding to different values of Y. Note the general property of such diagrams 
that in regions where the gradient a&/aY of the steady state curves is positive, the 
flow is subcritical (long waves propagate upstream) and in regions where the gradient 
is negative the flow is supercritical.-(This can be verified directly from (2.9a), (2.9 b)  and 
(2.1 l).) . , I  

Consider first the partially bold curve in figure 3 corresponding to Y = 0.501, the 
value of Y for the steady long-wave solution to join smoothly to unperturbed flow far 
upstream. This curve has a turning point where % is a minimum as a function of Y, 
corresponding to a critical narrowing of the shelf, when E = el, with el = 0.3911 (for 
this value of a). Provided E < el,  i.e. the shelf narrows less than the critical amount, 
following the bold curve gives the change in Y as & varies. With x decreasing from 
large values, & decreases from and hence so too does Y but more rapidly, so that 
Y < % and the dividing streamline deviates more than the perturbation to the step: 
some low-potential-vorticity fluid mounts the shelf. As yh passes symmetrically 
through a minimum value at the origin so too does Y, and as % increases downstream 
the point (Y,  &) retraces the bold curve returning eventually to (i, !j) Since the gradient 
of the bold curve is positive the free long-wave speed is greater than the imposed flow 
speed and the flow is subcritical throughout. We therefore describe this regime as 
' symmetric subcritical '. 

The CD integrations of the full equations of motion for E = 0.25 show behaviour 
consistent with this qualitative picture. Figure 4(a)  gives the position of the material 
contour V at time t = 102 for this case (with L = 42/2/11). By this time the transient 
disturbance associated with the initial conditions has moved a large distance upstream 
and the contour shape is almost indistinguishable from that predicted by the steady 
solution (corresponding to the bold line in figure 3), and shown here as a dashed curve. 
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FIGURE 4. Contour-dynamical integrations of the full equations of motion for u = 1/6n and E = 0.25. 
Here E < z 0.39 and the flow is subcritical. In these and later diagrams the edge of the shelf step 
is shown as a thin continuous line and position of the material contour W at various times by thicker 
continuous lines. Steady solutions derived from the long-wave limit are dashed curves. (a) The 
material contour at t = 102 and L = 42/2/71, The flow deviates from the steady long-wave solution 
solely in the presence of a train of short lee waves of almost vanishingly small amplitude. (b) For a 
shorter obstacle (L  = 2 / x )  with scale more closely comparable to the wavelength of the standing 
wave. At t = 42 a stronger lee-wave wake begins to emerge. 

The sole difference is the presence of a very small-amplitude lee-wave wake downstream 
of the constriction. The dominant wavelength within the wake is that of the unique 
small-amplitude wave with zero phase speed. This wave has finite wavelength equal, 
from (2.6), to 0.6667 and is of course absent from the long-wave limit. It is only weakly 
excited as its wavelength is only about one quarter of the length of the topographic 
perturbation. Figure 4@) shows a CD integration at time t = 42 for the same 
oncoming flow (a  = 1/6z) and constriction width (e = 0.25) but for the much shorter 
scale L = 2/n. The obstacle scale is far more closely comparable to the wavelength of 
the standing wave (determined by 01 alone) and hence a stronger lee-wave wake is 
beginning to emerge. For small 8 the equations of motion can be linearized about 
e = 0 and the evolution of the flow including short waves followed by Fourier super- 
position of individual modes. Solution of the linearized equation shows that the 
transients are always of amplitude comparable to the topographic displacement, and 
may therefore be much larger than the ultimate steady lee wave. 
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FIGURE 5. Characteristic integration of the long-wave equation as in figure 4 for L = 82/2/n: and the 
same flow strength a = 1/6z but with an increased narrowing, B = 0.5. The set of characteristics have 
been chosen to start close together and to fan out from the region of the control point at the origin. 

If the shelf narrows to precisely the critical amount, i.e. E = el, then the long-wave 
speed vanishes at the narrowing. For narrower constrictions, E > el, the bold curve in 
figure 3 no longer yields a solution. A unique smooth solution for E > el can however 
be deduced through analogy with open-channel flow, by requiring that the flow is 
determined by the condition that the long-wave speed vanishes at the narrowest point 
of the shelf. In terms of the solution curves shown in figure 3, this selects the unique 
curve that attains its minimum & as a function of Y at the narrowest point of the shelf. 
Such a curve corresponds to a value of 'Y smaller than 0.5a and therefore represents 
a partial blocking of the flow on the shelf. The slopes of the curves in figure 3 show that 
the large-time solution may be determined by information propagating away from the 
control at x = 0. In particular, steady upstream values of Y (where the flow is 
subcritical) follow by requiring Y to increase along @ = Y as Y, increases upstream 
from the control, and the downstream values of Y (where the flow is supercritical) 
follow by requiring Y to decrease as & increases downstream from the control. 
Upstream and downstream influence therefore appear simultaneously A consistent 
picture emerges from the long-wave characteristic integration shown in figure 5, with 
L = 81/2/n: and E = 0.5, obtained by initializing a set of closely spaced characteristics 
in a region from which they subsequently diverge. The characteristic passing through 
any fixed positive or negative x at sufficiently large time t can be traced back to a region 
arbitrarily close to x = 0, showing that the flow may indeed be controlled at the origin. 
Note however that if characteristics are initialized at a wider range of points then some 
intersect downstream of the constriction (x c 0) at times t > 35 showing that Y 
becomes multivalued, representing a breakdown of the long-wave theory downstream 
of the control point. The part of the flow to which the control applies will therefore 
depend crucially on the evolution and ultimate location of any short-lengthscale 
feature that forms. The CD integration of figure 6(a)  for the same case at t = 78 shows 
that, for large L, this short-lengthscale feature has a form similar to an undular bore 
(albeit with large wave steepness), lying downstream of the obstacle and allowing a 
transition between the controlled supercritical flow and the undisturbed downstream 
flow. Note also from the wave steepening properties described at the end of 92.2 that 



370 P .  H.  Haynes, E. R. Johnson and R.  G .  Hurst 

-4 -2 0 2 4 6 
A 

(b) 

_---_-_--.___.________ - - 
v 

I ~ ~ ~ ~ l ~ ~ ~ " " ~ " ~ ~ ~ " ~ ~ ~ " " ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ ~ ~ ' I " " I " " I " " I '  

-4 -2 0 2 4 6 
X 

FIGURE 6. Contour-dynamical integrations for the same flow strength and narrowing (a = 1/6n, 
E = 0.5) as figure 5. (a) For L = 81/2/n the flow at any fixed x rapidly approaches the dotted steady 
long-wave solution. This steady solution is joined to undisturbed flow far downstream by a down- 
stream propagating jump in the form of an undular bore (absent from the long-wave integration). 
The rear face of the bore shows here, at t = 78, fluid being pinched slightly into an eddy. This 
is more pronounced for the shorter narrowing in (b) where L = 2/n and by t = 45 an anticlockwise 
eddy has formed at  the downstream propagating jump between controlled flow and undisturbed flow. 

the leading edge of the upstream propagating disturbance is expected to take the form 
of a rarefaction. Again this is consistent with the results of the CD integration. 

For smaller L the behaviour is more complex, with positive vorticity shed as an eddy 
in the deep flow as in figure 6(b) ,  where e and a are unchanged but L = 2/n. Figure 
6(b)  includes for comparison the steady controlled solution derived from figure 3, 
showing that even for short obstacles the steady long-wave limit accurately predicts the 
upstream influence and the transition of the flow from upstream to downstream of the 
centre of the obstacle. 

The behaviour described here, with the control at the origin, is typical of all 
sufficiently slow flows (a small) for which E exceeds el. (Figure 9 below gives values of 
the critical narrowing el as a function of the flow strength a.) For small a it can be 
shown that 

(3.1) 
and therefore el increases relatively slowly towards 1 as a decreases. 

The decreasing value of Y for the material contour %? in the steady flow indicates that 
the flow on the shelf becomes progressively blocked with increasing e. Indeed, the 
steady long-wave theory predicts that under some circumstances reversed flow, and 
therefore recirculation, occurs. This is examined more closely in 94. 

el = 1 - 2(2a)f + O(a), 

3.2. The strong subcritical regime (a, < a < al) 
In figure 3 all necessary curves of constant U, those with minima of yh between 0 and 
0.5, return to the upstream value of yh = 0.5 with positive slope, indicating that 
information propagates upstream at non-zero speed. With increasing a, i.e. for 
increasing flow speeds or, equivalently, smaller step heights a value a, (say) is reached 
where the curve for a totally constricted shelf (e = 1) returns to yh = 0.5 with zero slope. 
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FIGURE 7. As figure 3, but here for the critical value a2 = 0.05448 of the flow strength a. Again 
graphs are plotted for Y = 0, O.la, ... 0.9a, a (solid curves). The dashed curve is for that value of 
Y corresponding to the hydraulically controlled flow for the largest possible narrowing of E = 1, 
where the shelf narrows to zero width at  the origin. The fact that the gradient of this curve is zero on 
r, = 0.5 indicates that the speed of long-wave perturbations decreases monotonically upstream to 
vanish at x = + CT). 

Y 
FIGURE 8. As figure 3, but here for faster flow with a = 1/3a. Here the dashed curves correspond to 
those values of Y for which the gradient of the graphs (and therefore the wave speed) vanish with 
Y, = 0.5 and those for which the gradient vanishes on r, = 0 or 1 and which might therefore represent 
states that are hydraulically controlled with E = 1. In the case of interest, where 5 decreases from its 
upstream value, the flow pattern for sufficiently large E is eventually determined by the bold portion 
of the curve marked AB. The streamline displacement Y increases as the shelf narrows and r, 
decreases, before returning symmetrically towards its undisturbed value as r, increases downstream. 
There is then the possibility of a jump from the part of this curve marked AC to that marked DE. 
Unlike the controlled subcritical flow the displacement of Y from + in the far field, the amount of 
upstream influence, is determined solely by the value of a and is independent of E. It takes its 
maximum value at a = a2 = 0.05448 where Y+O.731 as x+co and decreases monotonically to zero 
as a increases to a, = 0.25. 
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FIGURE 9. The various long-wave flow regimes determined by the flow strength a and the fractional 
shelf narrowing e. For large shelf step heights or slow flow (a < a,) the flow is upstream-downstream 
symmetric and subcritical for small narrowings (0 < E < el), and asymmetric controlled at  the origin 
for more extreme narrowings (el < e < 1). For moderate step heights or flow speeds (a, < a < a,) the 
flow remains symmetric subcritical for e < el. The behaviour for more extreme narrowings splits: for 
el < E < e2 the flow is asymmetric and controlled as for larger a but for the greatest narrowings 
(E ,  < e) the flow is supercritical and controlled from the upstream edge, and the upstream conditions 
having been modified by a fast upstream propagating transient. For low shelf steps or strong flow 
a > i) the flow is supercritical with no upstream influence. 

In the present example of a shelf occupying half the channel width a, = 0.05448. As 
described above, for cr: d az the flow takes two forms depending on whether E is greater 
or less than el. For 01 > a, an additional form appears. Figures 7 and 8 give the curves 
of & as a function of Y analogous to figure 3 but for faster flow, for a = a2 and 
a = 1/3n, respectively. In figure 8 the curve with zero long-wave speed far upstream 
( yh = 0.5) is marked partially dashed and partially bold. Since a > a, this curve has a 
minimum of & as a function of Y. Denote the critical narrowing corresponding to this 
minimum by eZ. Here el = 0.1868 and e2 M 0.3766. As for 01 > aZ, if 0 < E < el the flow 
is subcritical everywhere, whilst if el d E < eZ the flow may be asymmetric, controlled 
at the origin (i.e. the narrowest point of the shelf). For E > E~ the curves corresponding 
to flow controlled at the narrowest point do not connect via subcritical flow to any 
upstream flow (where of necessity yh = OS), and so either of the above flow forms is 
possible. The variation of eZ with a is also shown in figure 9. 

In order to understand what form the flow might take in this case it is useful to 
consider the wave speed, c( Y, yh), for the shelf width far upstream, i.e. for & = 0.5. For 
upstream propagation of disturbances, c( Y, 0.5) > 0, which occurs only for those 
curves crossing yh = 0.5 between Y = 1 - Y,  and Y = Y, where Y, is the unique contour 
displacement for which c( Y,, 0.5) vanishes and Y, > 0.5. It does not seem possible for 
Y to take any upstream value outside this range because it would not be possible for 
the necessary changes to propagate upstream. However, as may be seen from figure 8, 
the only solution curve which falls into this category, and allows values of F > e2 is the 
bold curve marked AB, on which the flow is supercritical everywhere except far 
upstream where the long-wave speed is zero. 
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FIGURE 10. Characteristics of the long-wave equations for CL = 1/3n and a topographic perturbation 
of the form Y,(x) = 0.5-0.25~0~~(1r~x/32) (for 1x1 < 16/1r) and Y,(x) = 0.5 (for 1x1 > 16/1r). Thus, 
according to the definition (3.1), E = 0.5. The fan of characteristics shown determines the ‘upstream- 
edge ’ controlled solution. The characteristics on the downstream side of the topographic perturbation 
indicate the possibility of a short-lengthscale feature allowing a transition from the ‘ upstream-edge- 
controlled’ flow to the downstream supercritical flow. There is also a fan starting somewhat to the 
left of that shown which initially resembles the fan in figure 5. However, the upstream propagating 
characteristics of this fan subsequently turn downstream and so cannot affect the upstream flow. 

For e > e2 the solution joining the flow in the neighbourhood of the constriction to 
the upstream flow is determined uniquely by the values of (Y,  &) given by the curve 
AB. As Y, decreases from 0.5 at A, Y increases, passing through a maximum value as 
Y, passes through its minimum at the origin. As Y, increases downstream towards 0.5, 
Y decreases. Once Y, has increased so that the shelf displacement is less than ez, it is 
possible for the solution to jump from the bold curve between the points C and A to 
the portion of the dashed curve with negative slope between the points D and E. 

Since the slope of the bold curve is negative throughout, the hypothesized steady 
flow is supercritical, controlled from the upstream edge of the obstacle, but with 
upstream influence that must be caused by the initial transients. Indeed, initially the 
configuration of the characteristics is similar to that in the hydraulically controlled case 
(as seen, for example, in figure 5). However, unlike that case, there is a later reversal 
of some of the characteristics that are initially propagating upstream. This leads to 
control by a second fan of characteristics adjacent to the unique characteristic that 
separates those that ultimately propagate downstream from those that ultimately 
propagate upstream. For a topographic perturbation of infinite width, as has been 
considered previously, the separatrix has x-tm as t+m, but with the gradient dx/dt 
increasing indefinitely. For a topographic perturbation with compact support, and 
therefore vanishing for x > xu, say, the separatrix tends to x = xu as t increases. 

An explicit example is now considered of a compact topographic perturbation with 
the latter property. Figure 10 shows the associated fan of characteristics. Note that 
there are characteristics that turn downstream close to the upstream edge of the 
obstacle (as expected for characteristics close to the separatrix). When these 
characteristics approach the downstream edge, they then turn upstream again. This is 
entirely predictable if the solution is to be described by the curve AB in figure 8, since 
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FIGURE 1 1 .  Contour-dynamical integrations for the cosine topography and upstream flow of figure 
10. (a) The material contour W at unit time intervals from t = 0 to 18. The dashed curve gives 
the steady long-wave solution obtained by assuming that the flow is controlled at the narrowing. This 
solution extends only a finite distance upstream before the associated long-wave speed vanishes with 
dY/dY,+co and the predicted material contour W becomes vertical. Initially the flow develops 
towards supercritical controlled flow downstream of the narrowing with the supercritical flow 
rejoining undisturbed flow through a downstream propagating jump and a positive eddy that is also 
advected downstream. (b) At later times the material contour W steepens upstream of the narrowing 
to form, by t = 26.5, a jump that begins to move downstream. The dashed curve is the steady long- 
wave solution obtained by assuming that the flow is controlled from the upstream edge of the 
constriction and assuming that the flow jumps from off-shelf to on-shelf at the first opportunity. (c) 
By t = 77.5 the jump has stopped moving, giving a steady flow that follows closely first the off-shelf 
upstream-edge-controlled solution, then jumps downstream of the maximum constriction onto the 
on-shelf branch. 

the wave speed must be zero at both ends of the obstacle. The characteristics then 
return part of the way over the obstacle, now with the behaviour corresponding to the 
subcritical branch AD in figure 8, and then turn again to run downstream off the 
obstacle, corresponding to the supercritical branch DE. The crossing of characteristics 
predicted on the downstream part of the obstacle tends to indicate that the 'upstream 
edge controlled' solution corresponding to the curve AB will not hold over the entire 
obstacle and again suggests that there may be a transition from the branch AB to the 
branch DE somewhere on th downstream slope of the obstacle. 

Contour-dynamics integrations confirm the features mentioned above. At early 
times, as shown in figure 11 (a), the flow seems to approach the hydraulically controlled 
solution, at least on the downstream side of the obstacle. Characteristic crossings 
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FIGURE 12. Curves relating Y to Y, as in figure 3 but here for the critical value a1 = 0.25 of the flow 
strength a. The bold curve representing the supercritical solution with zero long-wave speed far 
upstream passes through Q,;). The flow for all obstacle heights is symmetric supercritical flow with 
no upstream influence. 

downstream of the obstacle are resolved as a developing positive vorticity eddy, 
allowing the downstream connection from supercritical to undisturbed flow. The 
evolution towards the hydraulic steady state eventually ceases as fluid piles up 
upstream of the constriction and the returning contour overshoots. The increasing 
complexity and length of the contour precludes direct longer time integrations. The 
integrations were however continued from the last available position by smoothly 
joining the downstream supercritical controlled flow to the undisturbed material 
contour, eliminating the need to resolve the motion of the shed eddy. Varying the time 
and position of this smoothing made no perceptible difference to the evolution of the 
flow in the neighbourhood of the constriction. The contour %2 continued to steepen 
immediately upstream of the origin eventually coming arbitrarily close to the sidewall 
as shown in figure 11 (b), before moving downstream to take up the seemingly steady 
shape of figure 11(c). This steady solution shows a rapid transition from off-shelf 
to on-shelf flow downstream of the maximum constriction. The contour shapes 
upstream and downstream of this transition agree closely with the forms for the two 
supercritical solution branches predicted by the long-wave theory. 

The flow patterns described in this section are typical of the strong subcritical flows 
where a2 < a < al. As flow speeds increase and a increases towards a1 the separation 
of the evolution into a distinct intermediate stage of flow controlled at the constriction 
and a final supercritical flow with modified upstream conditions blurs. 

3.3. The supercritical regime (a 2 al) 
With increasing flow speeds or shallower steps the range of e for subcritical and 
constriction-controlled flow become smaller, with both E, and e2 vanishing 
simultaneously at a = a1 = 0.25 (figure 12). The flow at a = a, is determined by the 
unique bold curve representing undisturbed flow far upstream passing through ( Y ,  5) 
= (i, i) and Y = 0.501. At this critical value the long-wave speed vanishes far upstream 
as in the supercritical flows of the previous section. For larger a, as in figure 13 where 
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FIGURE 13. Curves relating Y to as in figure 12 but here for the more rapid flow of cc = l /n > ccl. 
The bold curve passing through (i, +) with negative slope represents steady long-wave solutions 
formed by long waves being swept downstream at finite speed to leave supercritical, symmetric flow 
with no upstream influence. 
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FIGURE 14. Contour-dynamical integrations for cc = 1/n, E = 0.5 and L = 8/n at times t = 15 and 
23. The inclusion of the short waves in the full calculation removes multivaluedness predicted by the 
corresponding long-wave characteristic integration. The flow rapidly approaches symmetric 
subcritical flow that is undisturbed away from the narrowing. The dashed line shows the steady 
solution predicted by long-wave theory. 

a = l/x, the long-wave speed on the required bold curve remains negative for all &, 
showing the flow to be supercritical everywhere with initial transients swept 
downstream and no modifications to the upstream conditions. Characteristic 
integrations of the long-wave equations in this regime show that, for large constrictions, 
characteristics can cross, forming two shocks or overturnings. However these both 
propagate downstream, carrying away the fluid initially near the constriction to leave 
symmetric supercritical flow which here is however undisturbed at infinity. This 
behaviour is closely reflected in the full CD integrations such as that shown in figure 
14. Initial perturbations are swept downstream as a negative vortex above the shelf and 
the positive trapped vortex at the constriction is rapidly established. 
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4. Reversed flow 
It is implicit in the steady-state analysis leading to figure 3 (and its equivalents for 

different values of a) that the potential vorticity takes only two values across the flow. 
It is clear that this condition is most likely to be satisfied if the flow is everywhere in 
the negative x-direction (so that, for example, the potential vorticity debris arising 
from the formation of small-wavelength features is swept downstream away from the 
topographic obstacle). 

The requirement for no reversed flow has also been noted in Pratt & Armi (1987) in 
the context of models where the potential vorticity varies continuously across the flow 
and the nonlinear steady solution follows from the functional relation between the 
potential vorticity and the stream-function, set by the assumed upstream conditions. 
Reversed flow, in the sense that all streamlines no longer connect smoothly to the 
upstream flow then invalidates the nonlinear solution. In the case studied here the 
requirement for the validity of the nonlinear steady solution is less severe because 
streamlines that lie fully within regions where the potential vorticity is homogeneous 
play no dynamical role. However, even in cases where it does not disrupt the nonlinear 
solution, reversed flow is still of interest because of the implications for tracer 
transport. 

Equations ( 2 . 8 ~ )  and (2.8 b) show that the velocity in the downstream direction takes 
its minimum value Umin in the region neighbouring one of the channel walls, with 

Umin = a+f(Y2- Y 2  h )  ( Y <  Y,>, (4.1 a) 

Um,,=a+f((l-Y)2--(1-&)2) ( Y >  6). (4.1 b) 

It follows that there is the possibility of reversed flow if a < f and the region of a 
steady-state diagram such as figure 3 in which it occurs is given by 

Y 2  < Y;-2a ( 4 . 2 ~ )  

and ( 1  - Y>2 < ( 1  - r,>"2a. (4.2b) 

Note that these regions enlarge as a decreases. It follows that almost all possible steady 
states include some reversed flow as a becomes very small and that hydraulically 
controlled states include reversed flow downstream of the obstacle if the supercritical 
extension of the bold curve in figure 3 to & = + (or its analogue for other values of a> 
enters the regions defined by ( 4 . 2 ~ )  or (4.2b). This turns out to be the case for all 
possible such states for given a if a < a, with a, = 0.1 11 1.  

The streamlines for the steady flow according to long-wave theory for the 
configuration in figure 6(a)  are shown in figure 15(a). Upstream propagating waves 
have modified the oncoming flow so the greater part of the downstream mass transport 
is off the shelf. This deep water mounts the shelf at the constriction to form a rapid jet. 
A stagnation point appears in the neighbourhood of the constriction and a recirculating 
eddy forms outside the jet. In the flow configuration being studied here, with piecewise- 
constant vorticity taking only two values, the reversed flow invalidates the solutions 
already derived only if it draws the contour back from downstream over the obstacle. 
For the cases being discussed in this subsection there is no evidence that this occurs, 
either from figure 15 (a) for a very long topography, or for shorter topography, as may 
be seen from figure 15 (b), which shows streamlines calculated from the CD integration 
corresponding to figure 6(b). The latter show that at large but finite times the eddy 
terminates downstream and thus draws no fluid from x = - co. The fluid within the 
elongating eddy thus originates locally as assumed in the long-wave analysis. 

13 F L M  253 
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FIGURE 15. Streamlines for the same flow strength and narrowing (a = 1/6n, E = 0.5) as in figures 5 
and 6. (a) The steady long-wave solution with L = 8 2 / 2 / x .  Flow over the shelf is almost blocked 
upstream, with off-shelf deep flow mounting the shelf at the narrowing. This combines with 
recirculating flow downstream to form a strong downstream coastal jet. (b) The full CD solution for 
L = 2/n at t = 45. The recirculating region downstream of the narrowing is terminated by the 
downstream propagating jump and eddy. Fluid in the recirculating region originates upstream. (c) 
The steady long-wave solution with L = 8 2 / 2 / x  and E = 0.9, showing reversed flow upstream. 

There may also be reversed flow upstream. For each a in the weakly subcritical 
regime this occurs for some value of E greater than the critical value el, but less than 
1. Figure 15(c) shows the streamlines for an example, with a = 1/6n and E = 0.9. For 
small a the condition that there is reversed flow upstream is that 

E > 1-2(22/2-l)a+O(a2). (4.3) 

In the new 'upstream edge controlled' regime there is again the possibility of 
reversed flow. It can be shown from (2.9u), (2.9b), ( 4 . 2 ~ )  and (4.2b) that the upstream 
supercritical flow is reversed if a < 4 4 2  -: = 0.082 11. For g 4 4 2 -  5) < a < 0.1479 
the flow must be reversed somewhere on the obstacle. Lastly, for 0.1479 < a < 4 the 
long-wave solution predicts no reversal, either upstream or over the obstacle. 

Figure 16 shows recirculation patterns in flows controlled from the upstream edge 
of the perturbation to the shelf width. The long-wave solution of figure 16 (a) shows the 
entire oncoming flow being forced off the shelf by an eddy adjacent to the constriction 
before turning sharply to regain the shelf on the downstream side of the constriction. 
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FIGURE 16. (a) Streamlines for the steady long-wave solution corresponding to figures 10 and 11. An 
isolated eddy at the constriction holds the flow off the shelf until a jump at the downstream edge of 
the eddy where the entire oncoming flow mounts the shelf. (b) Streamlines from the steady contour- 
dynamical solution showing details, missing from the long-wave solution, of the eddy edge and the 
transition region. The close alignment of the material contour V (shown as a second dashed line) and 
the independently calculated streamlines confirms that the flow is steady. 

Figure 16(b) shows the flow pattern from the corresponding asymptotically steady CD 
integrations. The inclusion of the short-wave terms resolves the details of the flow at 
the transition but has negligible effect elsewhere. With increasing flow speed the 
recirculating region extends further downstream and the jump weakens, vanishing 
completely when a exceeds a,. The flow is then symmetric with neither upstream nor 
downstream influence. The eddy at the constriction blocks the shelf almost completely, 
forcing the bulk of the oncoming flux into the deeper part of the channel both upstream 
and downstream. 

Reversed flow is, of course, possible in hydraulically controlled cases too for 
a1 < a < a2. As remarked earlier the downstream supercritical flow is then always 
reversed if a < 0.1 1 1 1 and it may also be shown that it is reversed for sufficiently large 
topography (but sufficiently small that the upstream supercritical regime is not entered) 
if a < 0.1248. In the upstream subcritical flow there is no reversal if a > $(41/2 - 5 )  = 
0.082 11. It follows then that for 0.1248 < a < 0.25 there is no flow reversal in any part 
of the hydraulically controlled regime. This result in itself would be a strong indication 
that hydraulically controlled flows are realizable in practice (although the CD 
integrations have in fact shown that the occurrence of reversed flow does not 
necessarily invalidate the hydraulically controlled solutions). 

5.  Conclusion 
5.1. Summary 

In this paper we have analysed what is arguably the simplest system that supports 
Rossby-wave behaviour and have presented examples of flows that evolve to a 
hydraulically controlled steady state. Similar states have been postulated in the Rossby 

13-2 
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wave regime by Hughes (1989 and references therein), Pratt & Armi (1987), Pratt 
(1989) and Woods (1993) from steady-state analysis of different, often more complex, 
models. We have supported the steady-state analysis by consideration of the time- 
dependent problem, including full numerical integration, and have shown that 
asymmetric states are possible, even in regimes that seem well outside that of long-wave 
theory. We have also identified a new hydraulic behaviour where the flow is controlled 
from the upstream edge of the obstacle. The behaviour of the system is summarized in 
figure 9. Whilst the model that we consider is not intended to represent any particular 
oceanographic context, it has much in common with models of coastal currents, and 
of large-scale mid-ocean currents with localized potential vorticity gradients (such as 
those considered by some of the abovementioned authors) and more realistic models 
of either can be expected to display similar behaviour. 

5.2. Relation to open-channel hydraulics 
The behaviour of the system is in many ways similar to that found in the more familiar 
case of hydraulically controlled open-channel flow. 

One difference is the existence, in the system that we have studied, of an ‘upstream 
supercritical’ regime, in which the flow is initially subcritical, but disturbances 
propagate upstream to change the flow in such a way that the flow over the obstacle 
is supercritical, with the wave speed vanishing in the upstream flow. The usefulness of 
the graphs of & against Y at constant Y mirrors that of graphs of specific energy in 
open-channel flows. However, figure 9 shows that once the form of the solution has 
been determined discussion of the general properties is more straightforward taking the 
topography to be given and considering the effects of varying flow speed. Then for all 
narrowings discussed here flow states pass with increasing flow speed from symmetric 
subcritical flow through flow controlled at the origin to supercritical flow with 
upstream influence and finally purely supercritical flow with the speed a for the various 
transitions decreasing with increasing E (except for the final transition which occurs at 
a = 4 for all 6) .  

In the open-channel case it is possible to characterize fairly completely the behaviour 
as a function of obstacle height and oncoming flow speed (see e.g. Baines 1987). This 
includes cases where there is a downstream propagating hydraulic jump, and others 
where the downstream hydraulic jump occurs at some position on the obstacle. In the 
system under consideration in this paper, it is clear that a phenomenon akin to a 
hydraulic jump may occur, for instance when freely propagating long waves steepen. 
Pratt (1989) mentions this possibility, including a possible example in a laboratory 
experiment. It is possible to consider the analogue of hydraulic jumps in the system 
under consideration, with a localized change in the position of the vorticity contour, 
and to derive the propagation speed as a function of the positions of the vorticity 
contour on either side of the jump. However it is not particularly clear that such simple 
models of hydraulic jumps in this context are as robust as they appear to be in open- 
channel flow. If they are, then knowledge of their properties (e.g. propagation speed as 
a function of amplitude) might be sufficient to characterize the behaviour of flow over 
long topography rather completely. But one reason for thinking that they might not be 
so robust is that the local dynamics of the jump might well lead to vorticity ‘debris’ 
(e.g. as in figure 6b) which is subsequently advected away, thereby changing the state 
of the flow away from the jump. If this was the case, then even if simple models could 
be formulated they would surely have to be based on the results of thorough numerical 
experimentation. 

In open-channel hydraulics the dependence of the final state on initial conditions has 
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been demonstrated by Pratt (1983). In the Rossby-wave context, recent CD integrations 
for initial value problems over isolated topography reported in Davey, Hurst & 
Johnson (1993) show that for some parameter values the final state differs for differing 
speeds of start-up. The numerical results presented here are for the particular case of 
impulsively started flow and the evolution in some cases could possibly be altered by 
switching on the flow more gradually. 

Again motivated by the analogy with open-channel hydraulics, one might ask 
whether there is any possibility of the transport through a system being hydraulically 
controlled, as in flow over a weir. The most obvious analogy would be a case where the 
upstream potential vorticity distribution was determined, but the net transport 
through the system was unknown and fixed by the requirement of a critical condition 
at a topographic obstacle. However, one might generalize the idea of hydraulic control 
to a forced system, e.g. a current system forced by wind stress. One might most 
straightforwardly represent such a forcing in the model that we have considered above 
by applying a body force that is independent of y ,  and therefore leaves the potential 
vorticity distribution unaffected by changes the integrated flux a. It is clear that, in the 
limit where the forcing was locally weak, so that the hydraulic solutions derived above 
were valid over the obstacle, but important in the x-integrated sense, there would be 
the possibility of the transport in the system being determined by the balance between 
the wind stress and the topographic drag associated with the hydraulically controlled 
state. Of course, the notion of topographic control of wind-forced currents is not new, 
but what is being raised here is the possibility that the topographic control is 
specifically a hydraulic one, distinguished by a subcritical to supercritical transition 
over the topographic obstacle, and with the control being effected at one particular 
location on the obstacle (which may have a complex and non-localized form). It is thus 
to be distinguished from control through the drag resulting from multiple-lee-wave 
trains, for example. 

5.3. Applications 
An obvious oceanographic example that might show hydraulic effects is the Antarctic 
Circumpolar Current. Davey (1978) has presented models where the transport for a 
given forcing is determined by topographic effects and Pratt (1989) has already 
considered the possibility of hydraulically controlled states on this current. The 
possibility arises that net transport in the Antarctic Circumpolar Current is determined 
by hydraulic control at one or two locations. 

The same possibility would presumably apply to the case of coastal currents. Some 
of the flow patterns discovered are of particular interest in this context. That shown in 
figure 15, for example, shows that the flow on the shelf may be almost completely 
blocked, with the transport confined to a narrow coastal jet. The existence of the 
recirculating eddy offshore presumably has implications for the dispersal of pollutants 
in such flows. 

5.4. Dispersive effects 
Returning to the model considered here, we note that under some conditions (e.g. those 
relevant to figure 6 a )  dispersive effects are almost certainly important, e.g. in 
determining the nature of the downstream adjustment back to the non-disturbed flow. 
One approach to studying such effects is through weakly nonlinear, weakly dispersive 
theory, which may be applied self-consistently to conditions that are close to resonance 
(i.e. a = $ for the flow configuration studied here). Depending on the steepening 
properties of the waves (determined by the undisturbed positions of the vorticity 
contour %? and the topographic contour) one generally obtains either the Korteweg-de 
Vries equation or the modified Kortewegde Vries equation. An exceptional case is 
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that on which we have concentrated here, where the vorticity contour and the 
topographic contour coincide in the initial upstream and downstream states. The 
resulting equation takes the form 

where the various quantities are defined by Y = Y,+py, & = Y,+pu2y,, X =  pix, 
T = pit and p A  = c, where c is the long-wave speed corresponding to Y = & = Y,, 
with p being a small parameter. 
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Baines and P. B. Rhines and financial support in the form of a Royal Society 
Meteorological Office Research Fellowship in Dynamical Meteorology. R. G. H. 
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Meteorological Office through a CASE Studentship. 

Appendix. Numerical solution 
The full evolution equations may be integrated by the method of contour dynamics. 

This technique has been widely used since the early studies of Deem & Zabusky (1978) 
and has proved to be highly efficient in investigations of the development of piecewise- 
constant-vorticity flows. The problem is effectively reduced to one dimension and all 
computational effort is concentrated on tracking the boundaries of the constant- 
vorticity regions. 

The streamfunction, $, may be found by the use of the Green's function for equation 
(2.4) (e.g. a simple extension to Lamb (1932, $156)) to be 

$(x, y )  = ay + 5 log [ sinh2 ("'" 2 "'I) + sin' ( '0, -Yo) )] ' dx, dy, 
k=1,2 2' 

- C 5 JJR, log [ sinh2 (ncx 2 ",I) + sin2 ( )] 'dx, dy,, (A 1) 
k=1,2 2n 

where R, are the regions of non-zero relative vorticity defined in (2.4) and wk = 
(- l)"-l. By Green's theorem, (A 1) gives the horizontal velocities as 

U(X,Y> = (u, v) = (-a, 0) 

- C 5 1 log [ sinh' ( '(" 2 ".') + sin2 ("" ~ y o ) ) ~ ( d x o ,  dy,) 
k=1,Z2' aR, 

+ ,:, 2 la,, log [ sinh' ("'" 2 "O') + sin2 ("" yo))r( - dx,, dy,), (A 2) 

where aR, is the boundary of region R,. It is these integrals which are evaluated by the 
CD algorithm. The code used is based on that described by Dritschel (1988). 
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Initially the material curve, which we denote by W ,  is taken to lie along the 
topographic jump y = Y,(x). The boundaries of the growing regions of non-zero 
vorticity are considered as a single closed contour consisting of %? and the topographic 
step Y,(x). The curves are joined at large 1x1 to close the contour by the insertion of 
corners (Dritschel 1988). As the computation progresses, these corners are moved 
outward to maintain an acute angle between the two curves. 

The method used to evaluate the velocity integrals at each node is the Lobatto 
approximation (e.g. Abramowitz & Stegun 1964). If the node in question lies at one 
end of the contour section along which the integral is to be evaluated, as is the case 
twice for each node, the singularity in the integral is dealt with by approximating the 
integrand by a simple logarithm and the contour section by a straight line. The integral 
may then be evaluated exactly. 

In the distance between the node in question, node i say, and the contour section 
along which the integral is to be evaluated, section (xj, xj+,) say, is sufficiently large, the 
contribution to the velocity integral may be approximated by 

This approximation speeds up the computation, allowing it to be continued for longer 
with an acceptably small loss of accuracy. 
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